Skill Check	
	21
	~/2
	010

Chapter 7-1 Adding and Subtracting Polynomials:

Vocabulary:

Monomial: number, a variable, or the product of a number and one or more variable with whole number exponents.

polynomials: is a monomial or a sum of monomials. Each monomial is called a term.

binomial: a polynomial with two terms

trinomial: a polynomial with 3 terms

standard form: A polynomial in one variable

leading coefficient: When you write a polynomial in standard form, the coefficient of the first term

leading coefficient degree constant term
$$2x^3 + x^2 - 5x + 12$$

Examples:

Example 1 Find the Degrees of Monomials:

Find the degree of each monomial.

a.
$$5x^2$$

b.
$$-\frac{1}{2}xy^3$$
 c. $8x^3y^3$ **d.** -3

c.
$$8x^3y^3$$

COLUTION	
	а
31 /1 1 / 1 / 1 / 1	

- **a.** The exponent of x is 2.
 - So, the degree of the monomial is 2.
- **b.** The exponent of x is 1, and the exponent of y is 3.
 - So, the degree of the monomial is 1 + 3, or 4.
- **c.** The exponent of x is 3, and the exponent of y is 3.
 - \triangleright So, the degree of the monomial is 3 + 3, or 6.
- **d.** You can rewrite -3 as $-3x^0$.
 - So, the degree of the monomial is 0.

Find the degree of the monomial.

1.
$$-3x^4$$

2.
$$7c^3d^2$$

3.
$$\frac{5}{3}y$$

1 1	
1. 4	
2. 5	
2. 3	
3. 1	
3. 1	
4. 0	
4. U	

Example 2: Writing a Polynomial in Standard Form

Write $15x - x^3 + 3$ in standard form. Identify the degree and leading coefficient of the polynomial.

Write each polynomial in standard form. Identify the degree and classify each polynomial by the number of terms.

a.
$$-3z^4$$

b.
$$4 + 5x^2 - x$$
 c. $8q + q^5$

c.
$$8q + q^5$$

•	\sim		
•			 м

Polynomial	Standard Form	Degree	Type of Polynomial
a. $-3z^4$	$-3z^{4}$	4	monomial
b. $4 + 5x^2 - x$	$5x^2 - x + 4$	2	trinomial
c. $8q + q^5$	$q^5 + 8q$	5	binomial

Write the polynomial in standard form. Identify the degree and leading coefficient of the polynomial. Then classify the polynomial by the number of terms.

6.
$$t^2 - t^3 - 10t$$

7.
$$2.8x + x^3$$

Example 4: Adding polynomials:

2 ways

a.
$$(2x^3 - 5x^2 + x) + (2x^2 + x^3 - 1)$$

Vertical:

Horizontal:

Example 4: Adding polynomials:

b.
$$(3x^2 + x - 6) + (x^2 + 4x + 10)$$

Vertical:

Horizontal:

SOLUTION

a. Vertical format: Align like terms vertically and add.

$$2x^3 - 5x^2 + x$$
+ $x^3 + 2x^2 - 1$

$$3x^3 - 3x^2 + x - 1$$

- The sum is $3x^3 3x^2 + x 1$.
- b. Horizontal format: Group like terms and simplify.

$$(3x^2 + x - 6) + (x^2 + 4x + 10) = (3x^2 + x^2) + (x + 4x) + (-6 + 10)$$

= $4x^2 + 5x + 4$

The sum is $4x^2 + 5x + 4$.

To subtract a polynomial, add its opposite. To find the opposite of a polynomial, multiply each of its terms by -1.

Example 5: Su	btracting polynomials:
2 ways	Find the difference.
	- (4-2 + 5) (2-2 + 2- 4)
	a. $(4n^2 + 5) - (-2n^2 + 2n - 4)$
Horizontal:	
1101120110011	
Vertical:	
Example 5: Su	btracting polynomials:
Example of ou	birdottiig porynomiato.
2 ways	b. $(4x^2 - 3x + 5) - (3x^2 - x - 8)$
,	
Horizontal:	
Vertical:	

Find the difference.

a.
$$(4n^2 + 5) - (-2n^2 + 2n - 4)$$

b.
$$(4x^2 - 3x + 5) - (3x^2 - x - 8)$$

SOLUTION

a. Vertical format: Align like terms vertically and subtract.

- The difference is $6n^2 2n + 9$.
- b. Horizontal format: Group like terms and simplify.

$$(4x^2 - 3x + 5) - (3x^2 - x - 8) = 4x^2 - 3x + 5 - 3x^2 + x + 8$$
$$= (4x^2 - 3x^2) + (-3x + x) + (5 + 8)$$
$$= x^2 - 2x + 13$$

The difference is $x^2 - 2x + 13$.

Example 6 Word Problem:

EXAMPLE 6 Solving a Real-Life Problem

A penny is thrown straight down from a height of 200 feet. At the same time, a paintbrush is dropped from a height of 100 feet. The polynomials represent the heights (in feet) of the objects after t seconds.

- a. Write a polynomial that represents the distance between the penny and the paintbrush after t seconds.
- b. Interpret the coefficients of the polynomial in part (a).

SOLUTION ${\bf a.}$ To find the distance between the objects after t seconds, subtract the polynomials. $-16t^2 - 40t + 200 \qquad \qquad -16t^2 - 40t + 200$ Paintbrush $- (-16t^2 + 100)$ \rightarrow $+ 16t^2 - 100$ -40t + 100▶ The polynomial -40t + 100 represents the distance between the objects after t seconds. **b.** When t = 0, the distance between the objects is -40(0) + 100 = 100 feet. So, the constant term 100 represents the distance between the penny and the paintbrush when both objects begin to fall. As the value of t increases by 1, the value of -40t + 100 decreases by 40. This means that the objects become 40 feet closer to each other each second. So, -40 represents the amount that the distance between the objects changes each second.

