8.5 Lesson Core Vocabulary intercept form, p. 450	 What You Will Learn Graph quadratic functions of the form f(x) = a(x - p)(x - q). Use intercept form to find zeros of functions. Use characteristics to graph and write quadratic functions. Use characteristics to graph and write cubic functions. 	

Graphing f(x) = a(x - p)(x - q)

You have already graphed quadratic functions written in several different forms, such as $f(x) = ax^2 + bx + c$ (standard form) and $g(x) = a(x - h)^2 + k$ (vertex form). Quadratic functions can also be written in **intercept form**, f(x) = a(x - p)(x - q), where $a \ne 0$. In this form, the polynomial that defines a function is in factored form and the *x*-intercepts of the graph can be easily determined.

3	d	iff	ar	'Ar	1 1	6	rm	e ·
V	- U		U		-	U		J .

Standard:

Vertex:

Intercept:

Graphing f(x) = a(x - p)(x - q)

- The x-intercepts are p and q.
- The axis of symmetry is halfway between (p, 0) and (q, 0). So, the axis of symmetry is $x = \frac{p+q}{2}$.
- The graph opens up when a > 0, and the graph opens down when a < 0.

EXAMPLE 1 Graphing f(x) = a(x - p)(x - q)

Graph f(x) = -(x + 1)(x - 5). Describe the domain and range.

SOLUTION

- **Step 1** Identify the *x*-intercepts. Because the *x*-intercepts are p = -1 and q = 5, plot (-1, 0) and (5, 0).
- Step 2 Find and graph the axis of symmetry.

$$x = \frac{p+q}{2} = \frac{-1+5}{2} = 2$$

Step 3 Find and plot the vertex.

The *x*-coordinate of the vertex is 2. To find the *y*-coordinate of the vertex, substitute 2 for *x* and simplify.

$$f(2) = -(2+1)(2-5) = 9$$

So, the vertex is (2, 9).

- Step 4 Draw a parabola through the vertex and the points where the x-intercepts occur.
- The domain is all real numbers. The range is $y \le 9$.

EXAMPLE 2 Graphing a Quadratic Function

Graph $f(x) = 2x^2 - 8$. Describe the domain and range.

SOLUTION

Step 1 Rewrite the quadratic function in intercept form.

$$f(x) = 2x^2 - 8$$
 Write the function.
 $= 2(x^2 - 4)$ Factor out common factor.
 $= 2(x + 2)(x - 2)$ Difference of two squares pattern

Step 2 Identify the x-intercepts. Because the x-intercepts are p = -2 and q = 2, plot (-2, 0) and (2, 0).

Step 3 Find and graph the axis of symmetry.

$$x = \frac{p+q}{2} = \frac{-2+2}{2} = 0$$

Step 4 Find and plot the vertex.

The x-coordinate of the vertex is 0. The y-coordinate of the vertex is

$$f(0) = 2(0)^2 - 8 = -8.$$

So, the vertex is (0, -8).

Graph the quadratic function. Label the vertex, axis of symmetry, and x-intercepts. Describe the domain and range of the function.

1.
$$f(x) = (x + 2)(x - 3)$$

1.
$$f(x) = (x+2)(x-3)$$
 2. $g(x) = -2(x-4)(x+1)$ **3.** $h(x) = 4x^2 - 36$

$$2h(v) = 4v^2 - 36$$

Find the zeros of each function. **a.** $f(x) = -2x^2 - 10x - 12$ **b.** $h(x) = (x - 1)(x^2 - 16)$

a.
$$f(x) = -2x^2 - 10x - 12$$
 Write the function.
 $= -2(x^2 + 5x + 6)$ Factor out common factor.
 $= -2(x + 3)(x + 2)$ Factor the trinomial.

So, the zeros of the function are −3 and −2.

b.
$$h(x) = (x - 1)(x^2 - 16)$$
 Write the function.
= $(x - 1)(x + 4)(x - 4)$ Difference of two squares pattern

So, the zeros of the function are −4, 1, and 4.

MONITORING PROGRESS ANSWERS

- **4.** 1, 6
- **5.** 2
- **6.** −1, 0, 1

Using Characteristics to Graph and Write Quadratic Functions

EXAMPLE 5 Graphing a Quadratic Function Using Zeros

Use zeros to graph $h(x) = x^2 - 2x - 3$.

SOLUTION

The function is in standard form. You know that the parabola opens up (a > 0) and the y-intercept is -3. So, begin by plotting (0, -3).

Notice that the polynomial that defines the function is factorable. So, write the function in intercept form and identify the zeros.

$$h(x) = x^2 - 2x - 3$$
 Write the function.

$$= x^2 - 2x - 3$$
 Write the function.
= $(x + 1)(x - 3)$ Factor the trinomial.

The zeros of the function are -1 and 3. So, plot (-1,0) and (3,0). Draw a parabola through the points.

EXAMPLE 6 Writing Quadratic Functions

Write a quadratic function in standard form whose graph satisfies the given condition(s).

a. vertex: (-3, 4)

b. passes through (-9, 0), (-2, 0), and (-4, 20)

a. Because you know the vertex, use vertex form to write a function.					
$f(x) = a(x - h)^2 + k$	Vertex form				
$=1(x+3)^2+4$	Substitute for a, h, and k.				
$= x^2 + 6x + 9 + 4$	Find the product $(x + 3)^2$.				
$= v^2 + 6v + 13$	Combine like terms				

b. The given points indicate that the x-intercepts are -9 and -2. So, use intercept form to write a function.

$$f(x) = a(x - p)(x - q)$$
 Intercept form
= $a(x + 9)(x + 2)$ Substitute for p and q .

Use the other given point, (-4, 20), to find the value of a.

$$20 = a(-4 + 9)(-4 + 2)$$
 Substitute -4 for x and 20 for $f(x)$.
 $20 = a(5)(-2)$ Simplify.
 $-2 = a$ Solve for a .

Use the value of a to write the function.

$$f(x) = -2(x + 9)(x + 2)$$
 Substitute -2 for a.
= $-2x^2 - 22x - 36$ Simplify.

SOLUTION

From the graph, you can see that the *x*-intercepts are 0, 2, and 5. Use intercept form to write a function.

$$f(x) = a(x - p)(x - q)(x - r)$$
 Intercept form
 $= a(x - 0)(x - 2)(x - 5)$ Substitute for p , q , and r .
 $= a(x)(x - 2)(x - 5)$ Simplify.

Use the other given point, (3, 12), to find the value of a.

$$12 = a(3)(3-2)(3-5)$$
 Substitute 3 for x and 12 for $f(x)$.
 $-2 = a$ Solve for a.

Use the value of a to write the function.

$$f(x) = -2(x)(x - 2)(x - 5)$$
 Substitute -2 for a.
= $-2x^3 + 14x^2 - 20x$ Simplify.

The function represented by the graph is $f(x) = -2x^3 + 14x^2 - 20x$.

