9.1 Properties of Radicals

- Use properties of radicals to simplify expressions.
- Simplify expressions by rationalizing the denominator.
- Perform operations with radicals.

Product Property of Square Roots

Words The square root of a product equals the product of the square roots of the factors

Numbers
$$\sqrt{9 \cdot 5} = \sqrt{9} \cdot \sqrt{5} = 3\sqrt{5}$$

Algebra
$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$
, where $a, b \ge 0$

EXAMPLE 1 Using the Product Property of Square Roots

a.
$$\sqrt{108} = \sqrt{36 \cdot 3}$$

b.
$$\sqrt{9x^3} = \sqrt{9 \cdot x^2 \cdot x}$$

a. $\sqrt{108} = \sqrt{36 \cdot 3}$	Factor using the greatest perfect square factor.	
$=\sqrt{36} \cdot \sqrt{3}$	Product Property of Square Roots	
$= 6\sqrt{3}$	Simplify.	
b. $\sqrt{9x^3} = \sqrt{9 \cdot x^2 \cdot x}$	Factor using the greatest perfect square factor.	
$= \sqrt{9} \cdot \sqrt{x^2} \cdot \sqrt{x}$	Product Property of Square Roots	
$=3x\sqrt{x}$	Simplify.	

MONITORING PROGRESS ANSWERS

- 1. $2\sqrt{6}$
- 2. $-4\sqrt{5}$
- 7x√x
- 4. $5n^2\sqrt{3n}$

Quotient Property of Square Roots

Words The square root of a quotient equals the quotient of the square roots of the numerator and denominator.

Numbers
$$\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{\sqrt{4}} = \frac{\sqrt{3}}{2}$$
 Algebra $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$, where $a \ge 0$ and $b > 0$

EXAMPLE 2 Using the Quotient Property of Square Roots

a.
$$\sqrt{\frac{15}{64}} = \frac{\sqrt{15}}{\sqrt{64}}$$

Quotient Property of Square Roots

$$\mathbf{b.} \ \sqrt{\frac{81}{x^2}} = \frac{\sqrt{81}}{\sqrt{x^2}}$$
$$= \frac{9}{x}$$

Radicals with the same index and radicand are called like radicals. You can add and subtract like radicals the same way you combine like terms by using the Distributive Property.

EXAMPLE 8 Adding and Subtracting Radicals

a.
$$5\sqrt{7} + \sqrt{11} - 8\sqrt{7} = 5\sqrt{7} - 8\sqrt{7} + \sqrt{11}$$
 Commutative Property of Addition

=
$$(5-8)\sqrt{7} + \sqrt{11}$$
 Distributive Property

$$= -3\sqrt{7} + \sqrt{11}$$
 Subtract.

b.
$$10\sqrt{5} + \sqrt{20} = 10\sqrt{5} + \sqrt{4 \cdot 5}$$
 Factor using the greatest perfect square factor.

=
$$10\sqrt{5} + \sqrt{4} \cdot \sqrt{5}$$
 Product Property of Square Roots

$$= 10\sqrt{5} + 2\sqrt{5}$$
 Simplify.
$$= (10 + 2)\sqrt{5}$$
 Distributive F

$$= (10 + 2)\sqrt{5}$$
 Distributive Property
$$= 12\sqrt{5}$$
 Add.

c.
$$6\sqrt[3]{x} + 2\sqrt[3]{x} = (6+2)\sqrt[3]{x}$$
 Distributive Property

$$= 8\sqrt[3]{x}$$
 Add.

EXAMPLE 9 Multiplying Radicals

Simplify $\sqrt{5}(\sqrt{3} - \sqrt{75})$.

SOLUTION

Method 1
$$\sqrt{5}(\sqrt{3} - \sqrt{75}) = \sqrt{5} \cdot \sqrt{3} - \sqrt{5} \cdot \sqrt{75}$$
 Distributive Property

=
$$\sqrt{15} - \sqrt{375}$$
 Product Property of Square Roots

$$= \sqrt{15} - 5\sqrt{15}$$
 Simplify.

$$=(1-5)\sqrt{15}$$
 Distributive Property

$$= -4\sqrt{15}$$
 Subtract.

Method 2
$$\sqrt{5}(\sqrt{3} - \sqrt{75}) = \sqrt{5}(\sqrt{3} - 5\sqrt{3})$$
 Simplify $\sqrt{75}$.

$$=\sqrt{5}[(1-5)\sqrt{3}]$$
 Distributive Property

$$=\sqrt{5}(-4\sqrt{3})$$
 Subtract.

=
$$-4\sqrt{15}$$
 Product Property of Square Roots

Simplify the expression.

23.
$$3\sqrt{2} - \sqrt{6} + 10\sqrt{2}$$

25.
$$4\sqrt[3]{5x} - 11\sqrt[3]{5x}$$

27.
$$(2\sqrt{5}-4)^2$$

24.
$$4\sqrt{7} - 6\sqrt{63}$$

26.
$$\sqrt{3}(8\sqrt{2} + 7\sqrt{32})$$

28.
$$\sqrt[3]{-4} (\sqrt[3]{2} - \sqrt[3]{16})$$