9.3 Solving Quadratic Equations Using Square Roots

- Solve quadratic equations using square roots.
- Approximate the solutions of quadratic equations.

Solutions of $x^2 = d$

- When d > 0, $x^2 = d$ has two real solutions, $x = \pm \sqrt{d}$.
- When d = 0, $x^2 = d$ has one real solution, x = 0.
- When d < 0, $x^2 = d$ has no real solutions.

EXAMPLE 1 Solving Quadratic Equations Using Square Roots

a. Solve $3x^2 - 27 = 0$ using square roots.

$$3x^2-27=0$$
 Write the equation.
 $3x^2=27$ Add 27 to each side.
 $x^2=9$ Divide each side by 3.
 $x=\pm\sqrt{9}$ Take the square root of each side.
 $x=\pm3$ Simplify.

The solutions are x = 3 and x = -3.

You can also solve

$$3x^2 - 27 = 0$$
 by factoring.
 $3(x^2 - 9) = 0$
 $3(x - 3)(x + 3) = 0$
 $x = 3$ or $x = -3$

b. Solve $x^2 - 10 = -10$ using square roots.

$$x^2 - 10 = -10$$
 Write the equation.

$$x^2 = 0$$
 Add 10 to each side.

$$x = 0$$
 Take the square root of each side.

The only solution is x = 0.

c. Solve $-5x^2 + 11 = 16$ using square roots.

$$-5x^2 + 11 = 16$$
 Write the equation.

$$-5x^2 = 5$$
 Subtract 11 from each side.

$$x^2 = -1$$
 Divide each side by -5 .

The square of a real number cannot be negative. So, the equation has no real solutions.

EXAMPLE 2 Solving a Quadratic Equation Using Square Roots

Solve $(x - 1)^2 = 25$ using square roots.

Each side of the equation $(x - 1)^2 = 25$ is a square. So, you can still solve by taking the square root of each side.

Solve $(x - 1)^2 = 25$ using square roots.

SOLUTION

$$(x-1)^2 = 25$$

Write the equation.

$$x - 1 = \pm 5$$

Take the square root of each side.

$$x = 1 \pm 5$$

Add 1 to each side.

So, the solutions are
$$x = 1 + 5 = 6$$
 and $x = 1 - 5 = -4$.

Use a graphing calculator to check your answer. Rewrite the equation as $(x-1)^2 - 25 = 0$. Graph the related function $f(x) = (x - 1)^2 - 25$ and find the zeros of the function. The zeros are -4 and 6.

Solve the equation using square roots.

1.
$$-3x^2 = -75$$

2.
$$x^2 + 12 = 10$$

1.
$$-3x^2 = -75$$
 2. $x^2 + 12 = 10$ **3.** $4x^2 - 15 = -15$

4.
$$(x+7)^2 = 0$$

5.
$$4(x-3)^2 = 9$$

4.
$$(x+7)^2 = 0$$
 5. $4(x-3)^2 = 9$ **6.** $(2x+1)^2 = 36$

1.
$$x = 5, x = -5$$

2. no real solutions

3.
$$x = 0$$

4.
$$x = -7$$

5.
$$x = \frac{9}{2}, x = \frac{3}{2}$$

6.
$$x = \frac{5}{2}, x = -\frac{7}{2}$$

Approximating Solutions of Quadratic Equations

EXAMPLE 3 Approximating Solutions of a Quadratic Equation

Solve $4x^2 - 13 = 15$ using square roots. Round the solutions to the nearest hundredth.

Graph each side of the equation and find the points of intersection. The x-values of the points of intersection are about -2.65 and 2.65.

Solve $4x^2 - 13 = 15$ using square roots. Round the solutions to the

SOLUTION

$$4x^2 - 13 = 15$$
 Write the equation.

$$4x^2 = 28$$
 Add 13 to each side.

$$x^2 = 7$$
 Divide each side by 4.

$$x = \pm \sqrt{7}$$
 Take the square root of each side.

$$x \approx \pm 2.65$$
 Use a calculator

The solutions are $x \approx -2.65$ and $x \approx 2.65$.

Solve the equation using square roots. Round your solutions to the nearest hundredth.

7.
$$x^2 + 8 = 19$$

8.
$$5x^2 - 2 = 0$$

9.
$$3x^2 - 30 = 4$$

7.
$$x \approx 3.32, x \approx -3.32$$

8.
$$x \approx 0.63, x \approx -0.63$$

9.
$$x \approx 3.37, x \approx -3.37$$

NTERPRETING MATHEMATICAL RESULTS

Use the positive square root because negative solutions do not make sense in this context. Length and width cannot be negative.

SOLUTION

The length ℓ is three times the width w, so $\ell = 3w$. Write an equation using the formula for the volume of a rectangular prism.

 $V = \ell wh$ Write the formula. 270 = 3w(w)(3) Substitute 270 for V, 3w for ℓ , and 3 for h.

 $270 = 9w^2$ Multiply.

 $30 = w^2$ Divide each side by 9.

 $\pm\sqrt{30} = w$ Take the square root of each side.

The solutions are $\sqrt{30}$ and $-\sqrt{30}$. Use the positive solution.

So, the width is $\sqrt{30} \approx 5.5$ feet and the length is $3\sqrt{30} \approx 16.4$ feet.