

Solve $2x^2 - 5x + 3 = 0$ using the Quadratic Formula.

SOLUTION

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(3)}}{2(2)}$$

$$= \frac{5 \pm \sqrt{1}}{4}$$

$$= \frac{5 \pm 1}{4}$$

Quadratic Formula

Substitute 2 for a, -5 for b, and 3 for c.

Simplify.

Evaluate the square root.

So, the solutions are
$$x = \frac{5+1}{4} = \frac{3}{2}$$
 and $x = \frac{5-1}{4} = 1$.

Solve the equation using the Quadratic Formula. Round your solutions to the nearest tenth, if necessary.

1.
$$x^2 - 6x + 5 = 0$$

2.
$$\frac{1}{2}x^2 + x - 10 = 0$$

3.
$$-3x^2 + 2x + 7 = 0$$

4.
$$4x^2 - 4x = -1$$

1.
$$x = 5, x = 1$$

2.
$$x \approx 3.6, x \approx -5.6$$

3.
$$x \approx -1.2, x \approx 1.9$$

4.
$$x = \frac{1}{2}$$

EXAMPLE 2 Modeling With Mathematics

The number y of Northern Rocky Mountain wolf breeding pairs x years since 1990 can be modeled by the function $y = 0.20x^2 + 1.8x - 3$. When were there about 35 breeding pairs?

SOLUTION

- Understand the Problem You are given a quadratic function that represents the number of wolf breeding pairs for years after 1990. You need to use the model to determine when there were 35 wolf breeding pairs.
- 2. Make a Plan To determine when there were 35 wolf breeding pairs, find the x-values for which y = 35. So, solve the equation $35 = 0.20x^2 + 1.8x 3$.
- 3. Solve the Problem

$$35 = 0.20x^2 + 1.8x - 3$$
 Write the equation.
$$0 = 0.20x^2 + 1.8x - 38$$
 Write in standard form.
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 Quadratic Formula
$$= \frac{-1.8 \pm \sqrt{1.8^2 - 4(0.2)(-38)}}{2(0.2)}$$
 Substitute 0.2 for a, 1.8 for b, and -38 for c.
$$= \frac{-1.8 \pm \sqrt{33.64}}{0.4}$$
 Simplify.
$$= \frac{-1.8 \pm 5.8}{0.4}$$
 Simplify.

The solutions are $x = \frac{-1.8 + 5.8}{0.4} = 10$ and $x = \frac{-1.8 - 5.8}{0.4} = -19$.

Because x represents the number of years since 1990, x is greater than or equal to zero. So, there were about 35 breeding pairs 10 years after 1990, in 2000.

Interpreting the Discriminant

The expression $b^2 - 4ac$ in the Quadratic Formula is called the **discriminant**.

Because the discriminant is under the radical symbol, you can use the value of the discriminant to determine the number of real solutions of a quadratic equation and the number of x-intercepts of the graph of the related function.

Interpreting the Discriminant

$$b^2 - 4ac > 0$$

$$b^2 - 4ac = 0$$

$$b^2 - 4ac < 0$$

- · two real solutions
- two x-intercepts
- · one real solution
- one x-intercept
- · no real solutions
- · no x-intercepts

EXAMPLE 3 Determining the Number of Real Solutions

a. Determine the number of real solutions of $x^2 + 8x - 3 = 0$.

$b^2 - 4ac = 8^2 - 4(1)(-3)$	Substitute 1 for a, 8 for b, and −3 for c.	
= 64 + 12	Simplify.	
= 76	Add.	
= 76	Add.	
▶ The discriminant is greater than 0. S	o, the equation has two real solutions.	
b. Determine the num	the of real solutions of $9x^2 + 1 = 6x$.	
Write the equation	in standard form: $9x^2 - 6x + 1 = 0$.	

Write the equation in standard form: $9x^2 - 6x + 1 = 0$.

$$b^2 - 4ac = (-6)^2 - 4(9)(1)$$
 Substitute 9 for a, -6 for b, and 1 for c.
= 36 - 36 Simplify.
= 0 Subtract.

▶ The discriminant is 0. So, the equation has one real solution.

7.
$$-x^2 + 4x - 4 = 0$$

8.
$$6x^2 + 2x = -1$$

9.
$$\frac{1}{2}x^2 = 7x - 1$$

EXAMPLE 4 Finding the Number of x-Intercepts of a Parabola

Find the number of x-intercepts of the graph of $y = 2x^2 + 3x + 9$.

Determine the number of real solutions of $0 = 2x^2 + 3x + 9$.

$$b^2 - 4ac = 3^2 - 4(2)(9)$$
 Substitute 2 for a, 3 for b, and 9 for c.
= $9 - 72$ Simplify.
= -63 Subtract.

Because the discriminant is less than 0, the equation has no real solutions.

So, the graph of $y = 2x^2 + 3x + 9$ has no x-intercepts.

Check

Use a graphing calculator to check your answer. Notice that the graph of $y = 2x^2 + 3x + 9$ has no x-intercepts.

- **11.** two *x*-intercepts
- **12.** one *x*-intercept

ļ				
ı	Methods	for Solving	Quadratic E	guations

	Method	Advantages	Disadvantages	
Factoring (Lessons 7.5–7.8)		Straightforward when the equation can be factored easily	Some equations are not factorable.	
	Graphing (Lesson 9.2)	Can easily see the number of solutions	May not give exact solutions	
		 Use when approximate solutions are sufficient. 		
		Can use a graphing calculator		
	Using Square Roots (Lesson 9.3)	• Use to solve equations of the form $x^2 = d$.	Can only be used for certain equations	
	Completing the Square (Lesson 9.4)	• Best used when $a = 1$ and b is even	May involve difficult calculations	
	Quadratic Formula (Lesson 9.5)	Can be used for any quadratic equation	Takes time to do calculations	
		Gives exact solutions		

EXAMPLE 5 Choosing a Method

Solve the equation using any method. Explain your choice of method.

a.
$$x^2 - 10x = 1$$

a.
$$x^2 - 10x = 1$$
 b. $2x^2 - 13x - 24 = 0$ **c.** $x^2 + 8x + 12 = 0$

$$c_1 r^2 + 8r + 12 = 0$$

$$x^2 - 10x = 1$$

Write the equation.

$$x^2 - 10x + 25 = 1 + 2$$

 $x^2 - 10x + 25 = 1 + 25$ Complete the square for $x^2 - 10x$.

$$(x-5)^2 = 26$$

Write the left side as the square of a binomial.

$$x - 5 = \pm \sqrt{26}$$

Take the square root of each side.

$$x = 5 \pm \sqrt{26}$$
 Add 5 to each side.

So, the solutions are
$$x = 5 + \sqrt{26} \approx 10.1$$
 and $x = 5 - \sqrt{26} \approx -0.1$.

b. The equation is not easily factorable, and the numbers are somewhat large. So, solve using the Quadratic Formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Quadratic Formula

$$= \frac{-(-13) \pm \sqrt{(-13)^2 - 4(2)(-24)}}{2(2)}$$
 Substitute 2 for a, -13 for b, and -24 for c.

$$=\frac{13\pm\sqrt{361}}{4}$$

Simplify.

$$=\frac{13 \pm 19}{4}$$

Evaluate the square root.

So, the solutions are
$$x = \frac{13 + 19}{4} = 8$$
 and $x = \frac{13 - 19}{4} = -\frac{3}{2}$.

c. The equation is easily factorable. So, solve by factoring.

$$x^2 + 8x + 12 = 0$$

Write the equation.

$$(x+2)(x+6) = 0$$

Factor the polynomial.

x + 2 = 0 or x + 6 = 0 Zero-Product Property

$$x = -2$$
 or $x = -6$ Solve for x .

The solutions are
$$x = -2$$
 and $x = -6$.

Solve the equation using any method. Explain your choice of method.

13.
$$x^2 + 11x - 12 = 0$$

14.
$$9x^2 - 5 = 4$$

15.
$$5x^2 - x - 1 = 0$$

16.
$$x^2 = 2x - 5$$

13	3. $x = -12, x = 1$; Sample answer:	
	The equation is easily factorable,	
	so solve by factoring.	
1	1. $x = 1, x = -1$; Sample answer: The	
1.		
	equation can be written in the form	
	$x^2 = d$, so solve using square roots.	
15	5. $x \approx 0.56, x \approx -0.36$; Sample	
	answer: The equation is not	
	factorable and the coefficient of the	
	x^2 -term is not 1, so solve using the	
	quadratic formula.	
14	6. no real solutions; Sample answer:	
10	The coefficient of the x^2 -term is 1 and	
	b is even, so solve by completing the	
	square.	